
Dynamic Matching With Teams

Qingyun Wu∗

Abstract

This paper studies a dynamic matching model in which a matchmaker creates
team based game sessions for sequentially arriving players and seeks a balance
between fairness and waiting times. We derive a closed-form optimal matching
policy and show that as the team size grows and the market becomes more bal-
anced, greedy policies become less appealing.

Key words: dynamic matching; market design; Markov decision process.

1 Introduction

Over the past 20 years the video game industry has been growing rapidly and
its global revenue is estimated to be $180.3 billion in 2021, according to Wijman
[12]. Many popular games have massive playerbases; for example, the number of
monthly active players in League of Legends is over 100 million, as of September
2016, based on an interview with the CEOs of Riot Games, by Kollar [8]. With
such tremendous amount of gamers, hundreds of millions of game sessions are created
every day. This paper studies one issue that every player versus player (PVP) game
is facing: matchmaking.

In competitive PVP games such as League of Legends, Dota 2, Overwatch, CS:GO,
etc, creating high quality matches is quite a challenge. For these games, a game
session consists of two teams playing against each other. And the foremost concern
for the matchmaker is the trade-off between player waiting time and skill balance
between the two teams. Players dislike waiting and hope to be assigned into a game
quickly. However for the sake of fairness and ultimately player experience, it is often
not a good idea to create game sessions whenever enough players have entered the
queue. Many games use ELO (a commonly used rating system in real world sports
such as Chess, Go, FIFA World Ranking, etc. See this wiki page for details: https:

//en.wikipedia.org/wiki/Elo_rating_system) based rating systems to measure
player skill. To make a game exciting and competitive, the matchmaking system needs

∗Department of Economics, Stanford University, Stanford, CA 94305, USA; JQ Investments,
Shanghai 200000, China (email: wqy@stanford.edu).

1

https://en.wikipedia.org/wiki/Elo_rating_system
https://en.wikipedia.org/wiki/Elo_rating_system

to find players of similar ELOs for each game session and make the skill difference
between the two teams as small as possible. Even though many games have concurrent
players count close to, or even over 1 million (so market thickness appears not to be
an issue here), finding a sweet spot between these two is no easy task, especially at
the highest and lowest end of the skill spectrum.

Game companies often give top priority to fairness and competitiveness of the
matching. Aside from the obvious benefit that even games are exciting and fun,
it also protects new players: if rookies are matched with random players, they are
likely to lose or even get stomped most of the time, which can be discouraging and
therefore detrimental to the growth of playerbase. Furthermore, when matchmaking
is mostly based on the time of entering the matching pool, it becomes easy to join
the same game session as someone else (called “queue sniping”). This sometimes
causes problems such as “stream sniping”: nowadays a considerable amount of players
stream on platforms like Twitch.tv and YouTube and they are sometimes trolled by
stream snipers (either their fans or malicious competitors), who can easily mess with
streamers’ gameplay as they observe streamers’ positions and actions through the
stream (called “ghosting”). A similar issue is called “teaming”. In games with more
than two teams/individuals that are supposed to work alone, e.g. PlayerUnknown’s
Battlegrounds, players can queue up with friends and effectively bypass the team size
limit and create unfair advantage. With a skill based matching system, such issues
become less prevalent.

However, if one puts a lot of emphasis on fairness, queue time inevitably becomes
an issue, especially at extremely high and low ELOs. In games like League of Legends,
10 players (5 vs 5) of similar skill level are needed for each game. Imagine now you
are the rank 1 player in League of Legends, then the matchmaking system wants to
match you with 9 other extremely skilled players. But it is highly likely that when
you queue up for a game, there are not enough top players who are also looking for
a game, so you have to wait. In fact the queue time for high ELO players is often
around 20-50 (a single game lasts on average about 30) minutes. A Brazilian player,
Jowsss, who was rank 1 in 3 vs 3 mode once waited 30 hours before he was assigned
to a game, and he failed to accept since he was sleeping when the queue popped.

This paper sets up a stylized dynamic matching model and characterizes the opti-
mal matching policy. The literature on dynamic matching that studies the trade-off
between the cost of waiting time and the benefit of market thickness is fast grow-
ing. Baccara, Lee and Yariv [3] is perhaps the closest to our paper. They study a
two-sided dynamic matching market in which one square and one round, each with
two possible types arrive in each time period and show that the optimal mechanism
cumulates a stock of incongruent pairs up to a threshold and matches congruent pairs
instantaneously. Leshno [9] studies a dynamic matching problem with an overloaded
waiting list and characterizes the optimal way of assigning priorities to the positions
of the waiting list. Akbarpour, Li and Gharan [1] models a kidney exchange market
in which the dynamically arriving agents might perish if not matched soon enough.

2

Their main insight is that waiting to thicken the market performs significantly bet-
ter than greedily matching agents upon arrival. On the other hand, with a different
model, but still on kidney exchange, Ashlagi, Jaillet and Manshadi [2] finds that the
benefit of matching in batches over the greedy policy is small. Our contribution to
this branch of literature is that, our model allows for a general “n vs n” matching
structure, other than the “one-to-one” style matching used by most of the papers in
the literature. Furthermore, this paper has a unique feature that, the quality of a
match depends on not only players’ opponents, but also their teammates. To the best
of our knowledge, this is also the first paper studying this trade-off (waiting time vs
thickness) analytically in the setting of video games matchmaking.

There is also a branch of emerging literature on the operations management aspect
of video games matchmaking. Chen et al [4] develops a framework with tools from
linear programming to analyze player engagement under different matching policies
and shows that significant improvement in player engagement can be achieved using
an optimal matchmaking policy over the industry standard skill-based matchmaking.
Chen et al [5] proposes an engagement optimized matchmaking algorithm based on
minimum weight perfect matching. Their simulation on real data shows that their
algorithm significantly outperforms other methods in the number of retained players.
Huang et al [7] develops a two-stage algorithm that first estimates gamers’ engagement
states using a Hidden Markov Model and then exploits that learning to maximize
game-play. The major difference between these papers and ours is that, they focus
on the matching algorithm that maximizes player engagement when a thick matching
pool already exists, while this paper investigates whether the matchmaker should
wait until there is a thick pool of players or match players greedily to reduce waiting
time. Our team-based matching also generalizes the “1 vs 1” setting studied in the
literature. For an overview of fairness in video games matchmaking, see Graepel and
Herbrich [6].

2 Model

Let there be a discrete time horizon t = 1, 2, 3, . . . At each time t, a new player
joins the matching pool and a matchmaker then decides whether/how to create game
sessions each consisting of two n-player teams from the players currently waiting in
the pool (if a game is formed, then those 2n players leave the matching system).
Denote a generic matching policy by R. Every player has a skill type known to the
matchmaker. (It is typically true that the matchmaker knows players’ skill levels
through past win/loss records, often in the form of ELO ratings.) In this paper we
study a simple setting in which there are only two skill types, high and low, denoted
by H and L respectively. The probability of a H type arriving is q and the probability
of a L type arriving is 1 − q. Of course, high and low are relative measures and
therefore q is a parameter that depends on the goal of the matchmaker. For example,
if creating a good environment for professional players is of high priority, then q is

3

small; while if protecting new players is important, then q is large.
There are two types of costs.
Firstly, the matchmaker wants to create fair games: in each game, he aims to have

an equal number of H players in both teams. Of course, the ideal situation is to
always create game sessions consisting of a single skill type, which could take a long
time, or even is impossible in game modes such that friends of different skill levels are
allowed to queue up together. Therefore matchmakers often settle for a weaker notion
of fairness like the one defined here. More specifically, whenever an imbalanced game
is formed, there is a cost associated with that game equals to α× I × 2n (i.e. α× I
per player), where

I = |number of H types in team 1− number of H types in team 2|,

and α ≥ 0 is a punishment parameter.
Secondly, as players dislike waiting, there is also a waiting cost. We assume a

linear cost structure and normalize the waiting cost to be 1 per period per player.
Given any matching policy R, and any realized sequence of player arrival, let CRt

denote the total costs up until time t, which is the sum of the imbalance cost of
the games formed at time ≤ t plus the total waiting costs occurred ≤ time t. More
formally, let GRt be the games formed at time ≤ t under R, and Pt be the set of
players arriving at time ≤ t. For any g ∈ GRt , the cost associated with forming g is
α× Ig×2n. And for any p ∈ Pt, use tpa and tpb(R) to denote the arrival and departure
time of p, then the waiting cost of p occurred ≤ time t is min(t, tpb(R))− tpa. Then,

CRt =
∑
g∈GR

t

α× Ig × 2n+
∑
p∈Pt

[min(t, tpb(R))− tpa].

The matchmaker would like to find the optimal matching policy that minimizes
the expected time average of total costs, i.e. the matchmaker is facing the following
optimization problem, with the expectation taken over all realized arrival sequences:

min
R

lim
t→∞

E(CRt)

t
.

To avoid technical complications, we assume that the maximum size of the match-
ing pool is finite, i.e. if there are ≥M (for some arbitrarily large M) players waiting
in the system, then at least one game session has to be formed. Under this mild as-
sumption, the optimization problem is well-defined and an optimal stationary policy
is guaranteed to exist, see Chapter 8 and 9 of Puterman [10]. We derive the optimal
stationary policy in the next section.

3 Optimal Policy

The first thing to notice is that, in the optimal policy, I is at most 1, since otherwise
we can exchange one high-type player from the team with more high-types and one

4

low-type player from the team with fewer high-types, and obtain a match with less
imbalance cost. Furthermore, we have the following lemma:

Lemma 3.1. There exists an optimal stationary policy that forms any zero imbalance
cost match immediately.

Let’s denote a sequence of realized arriving H and L types as an outcome path.
Two remarks before we prove this lemma:

(I). Since our objective is to minimize the expected cost, the optimal policy may
not be optimal along every outcome path. In fact it is possible that an optimal policy
is never optimal for any realized outcome path. Consider the following example:
suppose we take an action among {A,B,C} and the payoffs of the actions depend
on the outcome of a coin flip. If the coin comes up “Heads”, the payoffs of A, B,
and C are 10, 8, 1; while if the coin comes up “Tails”, the payoffs are 1, 8, 10. Then
overall action B is optimal in expectation, but for any realized coin flip, B is never
the optimal choice.

(II). We should heed the timing of making a decision. Suppose players A, B,
C, D enter the matching pool sequentially and originally A is matched to B and C
is matched to D. Imagine we can improve matching qualities by switching these 2
matches, i.e. by matching A to C and B to D. However, if we want to switch, we can
not make such a decision at the time when D arrives; instead, we have to decide at
the time when we originally match A to B, before D enters our matching pool.

Proof of Lemma 3.1: First notice that whenever there are at least 2n+1 players in
the system, we can pick 2n of them and form a zero cost match. Suppose there is an
optimal matching rule R that does not form a zero imbalance cost match consisting
of players A1, A2, ..., A2n (labeled according to time of arrival) immediately. Then
there exists an outcome path P such that A1, A2, ..., A2n stay in the matching pool
for at least 1 period, denote t̄ as the first time which this phenomenon occurs, i.e. t̄ is
the time when A2n arrives. We now construct a new policy R′ that is weakly better
than R on every path. For any outcome path P ′ that disagrees with P at some time
t ≤ t̄, this new matching rule agrees with R on P ′. Now, suppose an outcome path P ′

agrees with P for all time t ≤ t̄, we construct a new matching rule for each such path.
First we match A1, A2, ..., A2n immediately at time t̄ on path P ′; however, we pretend
that we did not create such a match and keep following R until the time when the
first player(s) among A1, A2, ..., A2n is supposed to be matched according to R. At
this time we do nothing, but keep those players who are supposed to be matched by
now in R but still not matched in R′ in an imaginary matching bank (of course they
still stay in the matching pool). Note at this point the size of the matching pools
under R and R′ is the same, although the composition may be different. We then
pretend we followed R until this time, and keep following R until the next player(s)
among A1, A2, ..., A2n is supposed to be matched according to R. Now we put these
non-Ai players in this match into our imaginary matching bank. Two cases: (I). If

5

the matching bank has exactly 2n players, then we form a match, and our modifica-
tion of R on this path P ′ ends: notice at this time the matching pools under R and
R′ are exactly the same, then we can follow R afterwards. (II). There are at least
2n + 1 players in the matching bank. We can pick 2n of them and form a zero cost
matching, remove these players from our matching bank (and matching pool), and
then pretend we followed R until now, and keep following R until the next player(s)
among A1, A2, ..., A2n is supposed to be matched according to R. We repeat this pro-
cess until our matching bank is empty, at which point the matching pools under R
and R′ are exactly the same, then we can follow R afterwards. Notice comparing R
and R′, only the matches involving A1, A2, ..., A2n in R are changed (either in match
composition or match time) (on each path P ′). And the modified matches in R′ are
all guaranteed to be zero cost, except the last one. If the last match in R′ is also zero
cost, then clearly R′ produces a weakly smaller imbalance cost than R. If the last
match in R′ is imbalanced and incurs a cost α×2n, then the total number of H types
in these modified matches must be odd, and thus at least one of the matches under
R must be imbalanced, i.e. the total imbalance cost among the modified matches in
R must be at least α× 2n. Therefore in this case, R′ also produces a weakly smaller
imbalance cost than R. Then no matter what, R′ does weakly better than R in terms
of imbalance cost. On the other hand, R′ is also better than R in terms of waiting
cost, since we form the first match involving A1, A2, ..., A2n earlier in R′ than in R,
and all other match creation times are the same under both policies. Therefore if R
is optimal, R′ must also be optimal. However, if it is optimal to form a zero cost
match immediately at time t̄, then by the optimality of stationary policies, it is also
optimal to do so at every decision time. (The proof strategy used here is similar to
the one in Tsitsiklis [11].)

With Lemma 3.1, we shall focus on stationary policies that form any zero imbalance
cost match immediately. Let’s inspect the state of the matching pool right before the
t-th player joins the system under such policies. A generic state can be represented
as (u, v), where u is the number of H types in the pool and v is the number of L
types in the pool. When there are less than 2n players in the matching pool, we can
do nothing but wait. When the matching pool contains 2n players, there are two
situations (u + v = 2n implies u and v must have the same parity): (I). u and v are
both even. In this case we can create a zero cost match with these 2n players, and
we shall do so immediately. (II). u and v are both odd. We have two options: the
first one is to immediately match the players, incurring an imbalance cost α for each
player, but no additional waiting costs, let’s call it the greedy policy; the second
one is to wait for one more period. Notice by Lemma 3.1, in the next period, if one
high-type player arrives, then we immediately form a zero cost match with u + 1 H
types and v − 1 L types, and leave one low-type player in the matching pool; if one
low-type player arrives, then we immediately form a zero cost match with u − 1 H
types and v + 1 L types, and leave one high-type player in the matching pool. This

6

indicates that the specific values of u and v do not matter, only their parities do.
Let’s call this policy the patient policy. The only work left is to determine which
of the greedy or patient policy is optimal for each parameter value α and q. This is
not as easy as it appears to be, since the size of the state space of the Markov chain
induced by the patient policy (formally defined below) is 2n(n + 1), and tracking
the stationary distribution of each state becomes tedious as n grows. However, we
still have to begin our analysis by characterizing the properties of the steady state
distribution of this Markov Chain.

Fix n, the state space of the Markov chain induced by the patient policy is the
set S = {(u, v)|u + v ≤ 2n − 1 or u + v = 2n and u, v are odd}, and the tran-
sition probabilities are the following: when u + v ≤ 2n − 2, P(u,v)→(u+1,v) = q
and P(u,v)→(u,v+1) = 1 − q; when u + v = 2n − 1, u odd, v even, P(u,v)→(0,0) = q,
P(u,v)→(u,v+1) = 1 − q; when u + v = 2n − 1, u even, v odd, P(u,v)→(u+1,v) = q,
P(u,v)→(0,0) = 1 − q; when u + v = 2n, u, v odd, P(u,v)→(0,1) = q, P(u,v)→(1,0) = 1 − q.
Notice this is an irreducible and aperiodic Markov chain, thus there exists a sta-
tionary distribution, denote it by π(u,v). Also, define Πk =

∑
u+v=k, (u,v)∈S π(u,v), for

0 ≤ k ≤ 2n, i.e. Πk is the proportion of time spent in a state in which k agents are
in the matching pool in the steady state.

Lemma 3.2. In the steady state distribution, π(0,1) = π(1,0) = π(0,0).

Proof of Lemma 3.2: we first show π(0,1) = π(1,0). Let δ1 denote the probability that
an outcome path starts from (0, 1) and ends at a state (u, v), where u+v = 2n and u,
v are odd, in 2n−1 steps (the other possibility is that u and v are even). It is easy to
compute that δ1 =

∑n
k=1

(
2n−1
2k−1

)
q2k−1(1 − q)2n−2k. Let δ2 denote the probability that

an outcome path starts from (1, 0) and ends at a state (u, v), where u+v = 2n and u,
v are odd, in 2n− 1 steps. We can compute that δ2 =

∑n−1
k=0

(
2n−1
2k

)
q2k(1− q)2n−2k−1.

Then δ1 + δ2 = (q+ (1− q))2n−1 = 1. Let’s write down the balance equation for π(0,1):
the state (0, 1) can be reached from (0, 0) with transition probability 1− q, and from
a state (u, v), where u+ v = 2n and u, v are odd, with transition probability q. Then
π(0,1) = (1− q)π(0,0) + qΠ2n. Since Π2n = π(0,1)δ1 + π(1,0)δ2, we have

π(0,1) = (1− q)π(0,0) + q(π(0,1)δ1 + π(1,0)δ2)

similarly:

π(1,0) = qπ(0,0) + (1− q)(π(0,1)δ1 + π(1,0)δ2)

cancel π(0,0) out in the above two equations, we get

π(0,1)[q − δ1(2q − 1)] = π(1,0)[1− q + δ2(2q − 1)]

notice 1 − q + δ2(2q − 1)=1 − q + (1 − δ1)(2q − 1) = 1 − q + 2q − 1 − δ1(2q − 1) =
q − δ1(2q − 1) > 0, then π(0,1) = π(1,0), plug this back in the first equation, we have

7

π(0,1) = π(1,0) = π(0,0).

At this point it is still a tedious task to compute the exact stationary distribution
of this Markov chain. Luckily we only care about the expected waiting cost, which can
be computed through Πk. From Lemma 3.2 we have Π0 = π(0,0) = 1/2(π(0,1)+π(1,0)) =
1/2Π1. It is also clear that Π1 = Π2 = ... = Π2n−1, since any state with k elements
is followed by a state with k + 1 elements; and the only way to get to a state with
k + 1 elements is through a state with k elements, for k = 1, 2, ..., 2n − 2. Finally
Π2n = π(0,1)δ1 + π(1,0)δ2 implies Π2n = 1/2Π1. Therefore 2Π0 = Π1 = Π2 = ... =

Π2n−1 = 2Π2n, combine this with
∑2n

k=0 Πk = 1, we have Π0 = Π2n = 1
4n

, and
Π1 = Π2 = ... = Π2n−1 = 1

2n
.

Now we can compute the expected waiting cost per period under the patient policy,
which is

1

4n
× 0 +

1

2n
× (1 + 2 + 3 + 4 + ...+ 2n− 1) +

1

4n
× 2n = n.

Notice patient policy produces no imbalance cost, therefore its total expected match-
ing cost per period is n.

Next we compute the expected matching cost of the greedy policy. Every 2n
periods the greedy policy forms a match, and the total waiting cost in these 2n
periods is 1 + 2 + 3 + ... + 2n − 1 = n(2n − 1) and the expected imbalance cost

is 2nα
∑n

k=1

(
2n

2k−1

)
q2k−1(1 − q)2n−2k+1 = 2nα 1−(2q−1)2n

2
. Thus the total expected

matching cost per period for the greedy policy is 1
2n

(n(2n − 1) + 2nα 1−(2q−1)2n
2

) =

n− 1/2 + α 1−(2q−1)2n
2

.

Therefore greedy is better than patient if and only if n − 1/2 + α 1−(2q−1)2n
2

≤ n,
i.e. when α ≤ 1

1−(2q−1)2n . To summarize:

Theorem 3.3.
When α ≤ 1

1−(2q−1)2n , the greedy policy is optimal, i.e. we form a match whenever
we have 2n players in the matching pool.

When α ≥ 1
1−(2q−1)2n , the patient policy is optimal, i.e. when there are 2n players

in the matching pool, if they form a zero imbalance cost match, create such a match;
otherwise wait for one period and form a zero imbalance cost match out of the 2n+ 1
players.

This result has three major implications: First, (the obvious one) when α is small,
greedy is more appealing. Second, greedy is more likely to beat patient when q is away
from 1/2: notice the total waiting cost is independent of q for both algorithms, while
the greedy algorithm is less likely to create an imbalanced matching when q moves
away from 1/2. Third, if q 6= 1/2, then the greedy policy becomes less appealing as
n grows large.

One possible extension of this model is that, the probability of a high-type player
arriving, q, may depend on the matching policy. (I thank one reviewer for suggesting

8

this.) Denote the corresponding q’s under the greedy policy and the patient policy as
qg and qp, respectively. We say a policy-q pair, (R, q̂), is an equilibrium, if R is the
optimal policy when q = q̂, and q̂ is the corresponding high-type arrival probability
when R is the matching policy. We now characterize all possible equilibria. First
note that when α < 1, the greedy policy is always the unique optimal policy, and
thus (greedy, qg) is the unique equilibrium. Hereafter we assume α ≥ 1. Let q̄ =
1
2
[1 + (1− 1

α
)

1
2n] and q = 1

2
[1− (1− 1

α
)

1
2n]. From Theorem 3.3, it is clear that, when

q = qg, the greedy policy is optimal when qg ≥ q̄ or qg ≤ q (∗); and when q = qp,
the patient policy is optimal when q ≤ qp ≤ q̄ (∗∗). Therefore when (∗) and (∗∗)
hold simultaneously, both (greedy, qg) and (patient, qp) are equilibria. If only (∗)
holds, then (greedy, qg) is the unique equilibrium. If only (∗∗) holds, then (patient,
qp) is the unique equilibrium. If neither (∗) nor (∗∗) holds, there is no equilibrium,
which means that the matchmaker will be constantly adjusting the matching policy
in response to the change in q, and q then shifts to a value that makes the incumbent
policy suboptimal.

4 Discussion

In this section we discuss the practical value of Theorem 3.3. We shall begin by
examining the punishment parameter α, which measures the relative displeasure of
participating in an imbalanced game over waiting in the queue. In games with long
gameplay sessions, α tends to be high, as players would suffer from the unpleasant
experience for a long duration. On the other hand, when the arrival rate of play-
ers is low, α tends to be low, as long waiting times typically imply large waiting
costs. Also, when the game is more relaxing (e.g. Fall Guys) and the players are
more casual, α tends to be lower. The game company usually estimates/determines
this parameter through player feedback from surveys or gaming forums. Therefore,
the following iterative process is a good way of applying our result in practice: the
game company does an initial estimation of the parameters, and determines the op-
timal policy with Theorem 3.3. Then it collects player experience about the current
matching algorithm, re-evaluates the parameters, and adjusts the matching policy if
needed. The game company may repeat this process until a good balance is found.
Of course, the biggest limitation of Theorem 3.3 is that, we restrict our attention to
only two skill types. Hence we propose the following heuristic algorithm to handle
multiple or even continuous skill types. First, the game company assigns players into
skill groups (e.g. top 1% ELO, inexperienced players, etc), such that even the (most)
imbalanced matches within each group, provide reasonable experiences to the players.
Then, within each group, the game company further divides the players into two skill
levels, and utilizes Theorem 3.3 to find the optimal matchmaking policy. This way,
the game company may, for example, implement the greedy policy at the highest skill
spectrum where the player arrival rate is low, and adopt the patient policy at the
medium skill range for better gameplay experiences. This heuristic algorithm can

9

also be applied in the same iterative manner as we discussed above.

Acknowledgments.

I thank Itai Ashlagi, Junnan He, Fuhito Kojima, Jacob Leshno, Xiaocheng Li and
Alvin Roth for helpful discussions.

References

[1] Akbarpour, Mohammad, Shengwu Li, and Shayan Oveis Gharan. “Thickness and
information in dynamic matching markets.” Journal of Political Economy 128.3
(2020): 783-815.

[2] Ashlagi, Itai, Patrick Jaillet, and Vahideh H. Manshadi. ”Kidney exchange in
dynamic sparse heterogenous pools.” arXiv preprint arXiv:1301.3509 (2013).

[3] Baccara, Mariagiovanna, SangMok Lee, and Leeat Yariv. “Optimal dynamic
matching.” Theoretical Economics 15.3 (2020): 1221-1278.

[4] Chen, Mingliu, Adam N. Elmachtoub, and Xiao Lei. “Matchmaking Strategies
for Maximizing Player Engagement in Video Games.” Available at SSRN 3928966
(2021).

[5] Chen, Zhengxing, et al. “Eomm: An engagement optimized matchmaking frame-
work.” Proceedings of the 26th International Conference on World Wide Web.
2017.

[6] Graepel, Thore, and Ralf Herbrich. “Ranking and matchmaking.” Game Devel-
oper Magazine 25 (2006): 34.

[7] Huang, Yan, Stefanus Jasin, and Puneet Manchanda. ““Level Up”: Leveraging
skill and engagement to maximize player game-play in online video games.” In-
formation Systems Research 30.3 (2019): 927-947.

[8] Kollar Phil. “The past, present and future of League of Legends studio Riot
Games.” Polygon (2016) (Sep 13).

[9] Leshno, Jacob. “Dynamic matching in overloaded waiting lists.” Available at
SSRN 2967011 (2019).

[10] Puterman, Martin L. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[11] Tsitsiklis, John N. “A short proof of the Gittins index theorem.” The Annals of
Applied Probability (1994): 194-199.

10

[12] Wijman, Tom. “The Games Market and Beyond in 2021: The Year in Numbers.”
Newzoo (2021) (Dec 22).

11

	Introduction
	Model
	Optimal Policy
	Discussion

